252 research outputs found

    A Marine Radar Wind Sensor

    Get PDF
    A new method for retrieving the wind vector from radar-image sequences is presented. This method, called WiRAR, uses a marine X-band radar to analyze the backscatter of the ocean surface in space and time with respect to surface winds. Wind direction is found using wind-induced streaks, which are very well aligned with the mean surface wind direction and have a typical spacing above 50 m. Wind speeds are derived using a neural network by parameterizing the relationship between the wind vector and the normalized radar cross section (NRCS). To improve performance, it is also considered how the NRCS depends on sea state and atmospheric parameters such as air–sea temperature and humidity. Since the signal-to-noise ratio in the radar sequences is directly related to the significant wave height, this ratio is used to obtain sea state parameters. All radar datasets were acquired in the German Bight of the North Sea from the research platform FINO-I, which provides environmental data such as wind measurements at different heights, sea state, air–sea temperatures, humidity, and other meteorological and oceanographic parameters. The radar-image sequences were recorded by a marine X-band radar installed aboard FINO-I, which operates at grazing incidence and horizontal polarization in transmit and receive. For validation WiRAR is applied to the radar data and compared to the in situ wind measurements from FINO-I. The comparison of wind directions resulted in a correlation coefficient of 0.99 with a standard deviation of 12.8°, and that of wind speeds resulted in a correlation coefficient of 0.99 with a standard deviation of 0.41 m s^−1. In contrast to traditional offshore wind sensors, the retrieval of the wind vector from the NRCS of the ocean surface makes the system independent of the sensors’ motion and installation height as well as the effects due to platform-induced turbulence

    High-resolution mapping of Bora winds in the northern Adriatic Sea using synthetic aperture radar

    Get PDF
    Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 115 (2010): C04020, doi:10.1029/2009JC005524.The Adriatic Sea is regularly subjected to strong Bora wind events from the northeast during winter. The events have a strong effect on the oceanography in the Adriatic, driving basin-scale gyres that determine the transport of biogeochemical material and extracting large amounts of heat. The Bora is known to have multiple surface wind jets linked to the surrounding orography and have been the focus of many studies, but it has not been possible to describe the detailed spatial structure of these jets by in situ observations. Using high-resolution spaceborne RADARSAT-1 synthetic aperture radar (SAR) images collected during an active Bora period (23 January–16 February 2003), we created a series of high-resolution (300 m) maps of the wind field. The obtained winds show reasonable agreement with several in situ wind observations, with an RMS wind speed error of 3.6 m/s, slightly higher than the 2–3 m/s errors reported in previous studies. These SAR images reveal the spatial structure of the Bora wind in unprecedented detail, showing several new features. In the Senj region of Croatia, several images show rhythmic structure with wavelengths of 2–3 km that may reflect Bora pulsation seen at fixed locations by previous investigators. Along the Italian coast, several images show a wide (20–30 km) band of northwesterly winds that abruptly change to the northeasterly Bora winds further offshore. Meteorological model results suggest that these northwesterly winds are consistent with those of a barrier jet forming along the Italian Apennine mountain chain

    Pyrene Mineralization by Mycobacterium sp. Strain KMS in a Barley Rhizosphere

    Get PDF
    To determine whether the soil Mycobacterium isolate KMS would mineralize pyrene under rhizosphere conditions, a microcosm system was established to collect radioactive carbon dioxide released from the labeled polycyclic aromatic hydrocarbon. Microcosms were designed as sealed, flow-through systems that allowed the growth of plants. Experiments were conducted to evaluate mineralization of 14C-labeled pyrene in a sand amended with the polycyclic aromatic hydrocarbons degrading Mycobacterium isolate KMS, barley plants, or barley plants with roots colonized by isolate KMS. Mineralization was quantified by collecting the 14CO2 produced from 14C-labeled pyrene at intervals during the 10-d incubation period. Roots and foliar tissues were examined for 14C incorporation. Mass balances for microcosms were determined through combustion of sand samples and collection and quantification of 14CO2 evolved from radiolabeled pyrene. No pyrene mineralization was observed in the sterile control systems. Greater release of 14CO2 was observed in the system with barley colonized by KMS than in microcosms containing just the bacterium inoculum or sterile barley plants. These findings suggest that phytostimulation of polycyclic aromatic hydrocarbons mineralization could be applied in remediation schemes

    The Coastal Observing System for Northern and Arctic Seas (COSYNA)

    Get PDF
    The Coastal Observing System for Northern and Arctic Seas (COSYNA) was established in order to better understand the complex interdisciplinary processes of northern seas and the Arctic coasts in a changing environment. Particular focus is given to the German Bight in the North Sea as a prime example of a heavily used coastal area, and Svalbard as an example of an Arctic coast that is under strong pressure due to global change. The COSYNA automated observing and modelling system is designed to monitor real-time conditions and provide short-term forecasts, data, and data products to help assess the impact of anthropogenically induced change. Observations are carried out by combining satellite and radar remote sensing with various in situ platforms. Novel sensors, instruments, and algorithms are developed to further improve the understanding of the interdisciplinary interactions between physics, biogeochemistry, and the ecology of coastal seas. New modelling and data assimilation techniques are used to integrate observations and models in a quasi-operational system providing descriptions and forecasts of key hydrographic variables. Data and data products are publicly available free of charge and in real time. They are used by multiple interest groups in science, agencies, politics, industry, and the public
    • …
    corecore